

US009408579B2

(12) United States Patent

Yamakawa et al.

US 9,408,579 B2

(45) **Date of Patent:**

(10) **Patent No.:**

Aug. 9, 2016

(54) RADIATION IMAGING APPARATUS AND PHANTOM USED FOR THE SAME

(75) Inventors: Tsutomu Yamakawa, Osaka (JP);

Koichi Ogawa, Tokyo (JP); Akitoshi Katsumata, Ichinomiya (JP); Masahiro Tsujita, Osaka (JP); Hideyuki Nagaoka,

Osaka (JP)

(73) Assignee: TAKARA TELESYSTEMS CORP.,

Osaka-Shi, Osaka (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 461 days.

(21) Appl. No.: 13/696,710

(22) PCT Filed: May 10, 2011

(86) PCT No.: **PCT/JP2011/060731**

§ 371 (c)(1),

(2), (4) Date: **Jan. 21, 2013**

(87) PCT Pub. No.: WO2011/142343

PCT Pub. Date: Nov. 17, 2011

(65) **Prior Publication Data**

US 2013/0114799 A1 May 9, 2013

(30) Foreign Application Priority Data

May 11, 2010 (JP) 2010-109144

(51) Int. Cl.

A61B 6/14 (2006.01) **A61B 6/02** (2006.01)

(Continued)

(52) U.S. Cl.

CPC . A61B 6/14 (2013.01); A61B 6/027 (2013.01); A61B 6/583 (2013.01); A61B 6/588 (2013.01); G06T 11/006 (2013.01); A61B 6/469 (2013.01); A61B 6/547 (2013.01); G06T 2211/436 (2013.01)

(58) Field of Classification Search

CPC A61B 6/032; A61B 6/583; A61B 6/4035; A61B 6/482; A61B 6/14; A61B 6/588; A61B 6/025; G01N 23/046

(56) References Cited

U.S. PATENT DOCUMENTS

 2004/0252811
 A1*
 12/2004
 Morita et al.
 378/207

 2006/0203959
 A1
 9/2006
 Spartiotis et al.

 2009/0310845
 A1
 12/2009
 Ogawa et al.

FOREIGN PATENT DOCUMENTS

JP 1982-203430 12/1982 JP 3023633 U 4/1996

(Continued)

OTHER PUBLICATIONS

International Search Report for PCT/JP2011/060731, ISA/JP, mailed Jun. 14, 2011.

(Continued)

Primary Examiner — Glen Kao Assistant Examiner — Chih-Cheng Kao (74) Attorney, Agent, or Firm — Harness, Dickey & Pierce, P.L.C.

(57) ABSTRACT

In the imaging space provided by a panoramic imaging apparatus, a phantom is arranged. The phantom is located to a predetermined tomographic plane and includes markers which image known positional information with an X-ray beam. The X-ray beam from an X-ray source is acquired as X-ray transmission data by a detector, and a panoramic image is produced using the data. Based on known positional information of the markers and information of marker positions in the panoramic image, distance information (Rs, Rd) between the X-ray tube and the detector and height information (B1) of the X-ray tube to the detector are calculated. From this calculated results and the acquired data, parameters ($\Delta x/\Delta Fi$, θ , $\Delta\theta/\Delta Fi$, D, A, CX, CY) defining positional relationships among the X-ray tube, the detector, and the tomographic plane are calculated such that amounts of changes in the position connecting the X-ray tube and the detector are considered in the parameters. This allows the parameters to be calibrated for 3D image reconstruction.

20 Claims, 37 Drawing Sheets

